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Abstract

Objectives: The shape is commonly used to describe the
objects. State-of-the-art algorithms in medical imaging are

predominantly diverging from computer vision, where voxel
grids,meshes, point clouds, and implicit surfacemodels areused.
This is seen from the growing popularity of ShapeNet (51,300
models) and Princeton ModelNet (127,915 models). However, a
large collection of anatomical shapes (e.g., bones, organs, vessels)
and 3D models of surgical instruments is missing.
Methods: We present MedShapeNet to translate data-
driven vision algorithms to medical applications and to
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adapt state-of-the-art vision algorithms tomedical problems.
As a unique feature, we directly model the majority of
shapes on the imaging data of real patients. We present use
cases in classifying brain tumors, skull reconstructions,
multi-class anatomy completion, education, and 3D printing.
Results: By now, MedShapeNet includes 23 datasets with
more than 100,000 shapes that are paired with annota-
tions (ground truth). Our data is freely accessible via aweb
interface and a Python application programming inter-
face and can be used for discriminative, reconstructive,
and variational benchmarks as well as various applica-
tions in virtual, augmented, or mixed reality, and 3D
printing.
Conclusions: MedShapeNet contains medical shapes from
anatomy and surgical instruments and will continue to
collect data for benchmarks and applications. The project
page is: https://medshapenet.ikim.nrw/.

Keywords: 3D medical shapes; benchmark; anatomy edu-
cation; shapeomics; augmented reality; virtual reality

Introduction

The success of deep learning in many fields of applications,
including vision [1], language [2] and speech [3], is mainly
due to the availability of large, high-quality datasets [4–6],
such as ImageNet [7], CIFAR [8], Penn Treebank [9],WikiText
[10] and LibriSpeech [11]. In 3D computer vision, Princeton
ModelNet [12], ShapeNet [13], etc., are the de facto

benchmarks for numerous fundamental vision problems,
including 3D shape classification and retrieval [14], shape
completion [15], shape reconstruction and segmentation [16].
Shape describes the geometries of 3D objects and is one of
the most basic concepts in computer vision. Common 3D
shape representations include point clouds, voxel occupancy
grids, meshes, and implicit surface models (signed distance
functions), which follow different data structures, cater for
different algorithms, and are convertible to each other [17].
These shape representations diverge from gray-scale medi-
cal imaging data routinely used in clinical diagnosis and
treatment procedures, such as computed tomography (CT),
magnetic resonance imaging (MRI), positron emission to-
mography (PET), ultra sound (US), and X-ray.

The concept of shape in medical imaging is not novel.
For example, statistical shape modeling (SSM) has been a
longstanding method for medical image segmentation [18]
and 3D anatomy modeling [19]. The use of shape priors and
constraints can also benefit medical image segmentation
and reconstruction tasks [20]. Furthermore, the prominent
Medical Image Computing and Computer Assisted Interven-
tion (MICCAI) society has established a special interest group
in Shape in Medical Imaging (ShapeMI). This group is dedi-
cated to exploring the applications of both traditional and
contemporary (e.g., learning-based) shape analysis methods
in medical imaging. Table 1 presents a partial list of profes-
sional organizations and events that are committed to this
objective.

Nevertheless, state-of-the-art (SOTA) algorithms connot
be directly applied to medical problems, since the vision
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methods were developed on general 3D shapes from
ShapeNet and not on volumetric, gray-scale medical data.
Therefore, the community needs a large, high-quality shape
database for medical imaging that represents a variety of 3D
medical shapes, i.e., voxel occupancy grid (VOR), mesh and
point representations of human anatomies [21]. The inclu-
sion of diverse anatomical shapes can aid in the develop-
ment and evaluation of data-driven, shape-based methods
for both vision and medical problems.

Computer vision methods, such as facial modeling [22]
and internal anatomy inference [23] involve anatomical
shapes, and medical problems can be solved using shape-
based methods. Cranial implant design [24–28] is a typical
example of a clinical problem that is commonly solved using
well-established shape completion methods [29]. Such a
shape completion concept can also be straightforwardly
extended to other anatomical structures or even the whole
body [30]. Therefore, there is a need for both normal and

Table : A non-inclusive list of organizations & events featuring shape and computer vision methods for medical applications.

Sources Description Category

Zuse Institute Berlin (ZIB) Shape-informed medical image segmentation and shape priors in
medical imaging

Research group

ShapeMI Shape processing/analysis/learning in medical imaging MICCAI workshop
SIG Shape modeling and analysis in medical imaging MICCAI special interest group (SIG)
AutoImplant I, II Skull shape reconstruction and completion MICCAI challenge
WiSh Women in shape analysis, shape modeling Professional organization
STACOM Statistical atlases and computational models of the heart MICCAI workshop
SAMIA Shape analysis in medical image analysis Book
CIBC Image and geometric analysis Research group
GeoMedIA Geometric deep learning in medical image analysis MICCAI-endorsed workshop
IEEE TMI Geometric deep learning in medical imaging Journal special issue
PMLR Geometric deep learning in medical image analysis Proceedings
Elsevier Riemannian geometric statistics in medical image analysis Book
Springer Geometric methods in bio-medical image processing Proceedings
MCV Workshop on medical computer vision CVPR workshop
MCV – Workshop on medical computer vision MICCAI workshop
MeshMed Workshop on mesh processing in medical image analysis MICCAI workshop
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pathological anatomies to solve shape-based problems that
are conventionally addressed using gray-scale medical im-
ages, e.g., extacting biomarkers [31].

In this paper, we present MedShapeNet, (1) a unique
dataset for medical imaging shapes that serve complemen-
tary to existing shape benchmarks in computer vision, (2) a
gap-bridger between the medical imaging and computer
vision communities, and (3) a publicly available, continuous
extending resource for benchmarking, education, extended
reality (XR) applications [32], and the investigation of
anatomical shape variations.

While existing datasets, such as ShapeNet are comprised
of 3D computer-aided design (CAD) models of real-world
objects (e.g., plane, car, chair, desk), MedShapeNet provides
3D shapes extracted from the imaging data of real patients
including healthy as well as pathological subjects (Figure 1).

Shape and voxel features

Shapes describe objects’ geometries, provide a foundation
for computer vision, and serve as a computationally efficient
way to represent images despite not capturing voxel fea-
tures. In medicine, numerous diseases alter the morpho-
logical attributes of the affected anatomical structures
(Figure 2). For instance, neoplastic formations, such as tu-
mors, significant alter the morphologies of organs like the
brain and the liver (Figure 3); neurological disorders,
including Alzheimer’s disease (AD) [33], Parkinson’s disease

(PD) [34] and substance use disorders, for instance, alcohol
use disorder (AUD) and cocaine use disorder (CUD), can also
causemorphological changes of brain substructures, such as
the cerebral ventricles and the subcortical structures. These
morphologic alterations allow disease detection and classi-
fication either manually, by medical professionals or auto-
matically, through the application of specialized (e.g., shape
analysis) machine learning algorithms.

Hence, MedShapeNet highlights the significance of
shape features, including jaggedness, volume, elongation,
etc., over voxel features, such as intensities, for disease
characterization, current medical image analysis tasks are
still dominated by voxel-basedmethods. For instance, the so-
called voxel-wise spatial predictive maps, as demonstrated
by Akbari et al. [35], can pinpoint areas of early recurrence
and infiltration of glioblastoma. These maps can be effec-
tively used for targeted radiotherapy [36] (Figure 2), as re-
gionswith high probability are associatedwith a greater risk
of tumor recurrence after resection. A naturally arising
question is whether such predictive maps can be derived
from the tumors’ geometries. MedShapeNet provides a
platform to investigate the question and more:
– What diseases can be comprehensively characterized by

the shape features of the affected anatomical structures,
andwhat diseases are solely reflected on voxel features?

– How can one obtain discriminative shape features for
disease detection using a machine learning model,
either by handcrafting or learning them automatically
using a deep network?
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– How to effectively combine shape and voxel features
when shape features alone are insufficient for disease
detection?

– Do changes in voxel and shape features correlate sta-
tistically, and if so, how can this correlation be
quantified?

– Which of the current voxel-based mainstream ap-
proaches can be substituted with computationally more
efficient shape-based methods for the analysis of medi-
cal data?

Transitioning from gray-scale imaging data to shape data
and shape-based methods brings three primary benefits:
1) Shapemanifolds are spatially sparse, which enables the

use of more computationally efficient algorithms, such
as sparse convolutions [37], point cloud [38] and mesh
[39] neural networks;

2) Shape data contain less identifying information than
gray-scale imaging data, reducing the vulnerability to
privacy attack when they are publicly shared [40];

3) Training on shape data encourages a deep network to
concentrate on learning discriminative geometric fea-
tures instead of patients’ identities irrelevant to the
task. This can help improve the robustness and trust-
worthiness and prevent identity-driven bias of the
learning system.

Sources of shapes

The shapes in MedShapeNet mostly originate from high-
quality segmentation masks of anatomical structures,
including different organs, bones, vessels, muscles, etc.
(Figure 4). They are generated manually by domain experts,
as those of the ground truth segmentations provided by
medical image segmentation challenges [41], or semi-
automatically, with the help of a segmentation network
(e.g., TotalSegmentator [42], autoPET whole-body segmenta-
tion [43], AbdomenAtlas [44]). The majority of semi-
automatic segmentations were also quality-checked by ex-
perts. Anatomical shapes with sophisticated geometric
structures, such as the pulmonary trees (Figure 5), are also
included in theMedShapeNet collection. In our terminology,
we refer to binary voxel occupancy grids as segmentation
masks, which we subsequently convert to meshes and point
clouds using the Marching Cubes algorithm [45]. The ma-
jority of the source segmentation datasets are Creative
Commons (CC) – licensed (Table 2), allowing us to adapt and
redistribute the data. Furthermore, MedShapeNet includes
both normal (Figure 1) and pathological shapes (Figure 3),
delivered by the imaging data of healthy and diseased sub-
jects, respectively. In addition, MedShapeNet provides 3D
medical instrument models acquired using 3D handheld
scanners [46] (Figure 4).
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AbdomenAtlas

The dataset provides masks of 25 anatomical structures and
seven types of tumors, derived from 5,195 CTs of 26 hospitals
across eight countries [44]. These anatomical structures
include the spleen, right kidney, left kidney, gall bladder,
esophagus, liver, stomach, aorta, postcava, portal and
splenic veins, pancreas, right and left adrenal glands, duo-
denum, hepatic vessel, right and left lungs, colon, intestine,
rectum, bladder, prostate, left and right femur heads, and
celiac trunk. Shape quality is ensured through manual an-
notations by medical professionals supported by a semi-
automatic active learning procedure. The pathology-
confirmed tumors include kidney, liver, pancreatic, hepat-
ic vessel, lung, colon, and kidney cysts. The dataset provides
a total of 51.8 K tumor masks. Moreover, a novel modeling-
based tumor synthesis method is used to generates small,
synthetic (<20 mm) tumor shapes [92, 93].

Pulmonary trees

The PulmonaryTree dataset [84] is a collection of pulmonary
tree structures, amassed from 800 subjects across various
medical centers in China [94]. It includes detailed 3D models
of pulmonary airways, arteries, and veins, totaling
800 × 3=2,400 shapes. Each 3D model originates from CT

scans with 512 × 512 voxels and 181–798 slices. The Z-spacing
ranges from 0.5 to 1.5 mm. A collaborative annotation pro-
cedure ensures consistency provides a detailed and accurate
representation of the pulmonary structures [95]. This pro-
cedure required approximately 3 h per case. The Pulmo-
naryTree dataset introduces complex tree-like structures, a
challenging aspect in medical image analysis (Figure 5).
Specific technical challenges include maintaining the conti-
nuity of thin structures and addressing the uneven thickness
of the main and branch structures.

TotalSegmentator

The dataset fromWasserthal et al. [42] includes over 1,000 CT
scans and the masks of 104 anatomical structures covering
the whole body. The masks are generated automatically by a
nnUNet [96]. The data have been used to improve diagnosis
by correlating organ volumes with disease occurrences [97].

Human connectome projects (HCP)

The 1,200 Subjects Data Release from HCP includes 1,113
structural 3T head MRI scans of healthy young adults. From
each scan, the Cortical Surface Extraction script provided by
BrainSuite1 is used to extract the skull and brain masks.
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MUG500+

This dataset contains the binary masks and meshes of 500
healthy human skulls and 29 craniectomy skulls with sur-
gical defects [81]. Thresholding delivered the masks from
head CT scans.

SkullBreak/SkullFix

The dataset includes the binary masks of healthy human
skulls and the corresponding skulls with artificial defects.
Similar to MUG500+ [81], thresholding head CTs from the
CQ500 dataset 2 yields the masks.

Aortic vessel tree (AVT)

The dataset contains 56 computed tomography angiography
(CTA) scans of healthy aortas and the masks of the aortic
vessel trees [54], including the aorta, the aortic arch, the
aortic branch, and the iliac arteries (Figure 1).

Vertebrae segmentation (VerSe)

The VerSe challenge provides the masks of vertebrae from
around 210 subjects [91]. In total, 2,745 vertebra shapes are
generated.

Automated segmentation of coronary
arteries (ASOCA)

The ASOCA challenge provides the manual segmentations of
20 normal and 20 diseased coronary arteries [50].

3D teeth scan segmentation and labeling
challenge (3DTeethSeg)

Automated teeth localization, segmentation, and labeling
from intra-oral 3D scans significantly improve dental di-
agnostics, treatment planning, and population-based studies
on oral health. Before initiating any orthodontic or restor-
ative treatment, it is essential for a CAD system to accurately
segment and label each instance of teeth. This eliminates the
need of time-consuming manual adjustments by the dentist.
The 3DTeethSeg provides the upper and lower jaw scans of
900 subjects, and the manual segmentations of the teeth,
obtained from clinical evaluators with more than 10 years of
expertise [87, 88].

Lung cancer patient management (LNDb)
challenge

This dataset comprises lung nodule in low-dose CTs recorded
for lung cancer screening [78, 79]. A total of 861 lung nodule
masks correspond to 625 individual nodules segmented from
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Figure 1: Example shapes in MedShapeNet,
including various bones (e.g., skulls, ribs and
vertebrae), organs (e.g., brain, lung, heart,
liver), vessels (e.g., aortic vessel tree and
pulmonary artery) and muscles.
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204 CTs. Five radiologists identified all pulmonary nodules
with an in-plane dimension of 3 mm and higher.

Evaluation of myocardial infarction from
delayed-enhancement cardiac MRI (EMIDEC)

This EMIDEC challenge provides 150 delayed enhancement
MRI (DE-MRI) images in short axis orientation of the left
ventricles. Experts contoured the myocardium and infarc-
tion areas in normal (50 cases) and pathological (100 cases)
cases [63, 64]. The imageswere acquired roughly 10 min after
the injection of a gadolinium-based contrast agent. The
dataset is owned by theUniversity Hospital of Dijon (France),
but it is freely available.

ToothFairy

Placing dental implant can become complex when the
implant hits the inferior alveolar nerve. The ToothFairy
dataset contains cone-beam computed tomography (CBCT)
images and was released for a segmentation challenge in
2023 [90]. It extends the previous datasets (i.e. [98]) and
comprises 443 dental scans with a voxel size of 0.3 mm3

yielding volumes with shapes ranging from (148, 265, 312)
to (169, 342, 370) across the Z, Y, and X axes, respectively.
The dataset includes 2D sparse annotations for all 443 vol,
while only a subset of 153 vol contains detailed 3D voxel-level
annotations. A team of five experienced surgeons delivered
the ground truth [99, 100]. Additionally, a test set of 50 CBCT
with a voxel size of 0.4 mm3 is provided for evaluation.

HEad and neCK TumOR segmentation and
outcome prediction (HECKTOR)

The training set of the HECKTOR challenge comprises 524
PET-CT volumes from seven hospitals with manual primary

tumor and metastatic lymph nodes contours [73]. The data
originates from FDG-PET and low-dose non-contrast-
enhanced CT images of the head and neck region of subjects
suffering from oropharyngeal cancer. The training set of the
this challenge is provided to MedShapeNet.

Figure 2: The predictive maps overlaid onto patients’ MRI scans. The
predictive maps are color-coded to indicate high or low probability of
tumor infiltration.

Figure 3: Example pathological shapes in MedShapeNet, including
tumorous kidney (paired), brain (with real and synthetic tumors), liver and
head & neck, as well as diseased coronary arteries. For illustration
purpose, the opacity of some shapes is reduced to reveal the underlying
tumors.We can study the effects of tumors on themorphological changes
of an anatomy (e.g., brain) using such pathological data.

Li et al.: MedShapeNet 79



Figure 4: Illustration of 3D models of medical
instruments used in oral and cranio-
maxillofacial surgeries. The 3D models are
obtained using structured light 3D scanners
(Artec Leo from Artec3D and AutoScan Inspec
from shining 3D). Instrument models can be
retrieved by the search query instrument via
the MedShapeNet web interface. Image taken
from https://xrlab.ikim.nrw/.

Figure 5: Illustration of a pulmonary tree
comprising the airway, artery and vein – thin
structures that are difficult to segment and
reconstruct.

Table : The sources segmentation datasets (ordered alphabetically).

Sources Description Dataset license

AbdomenAtlas []  organs and seven types of tumor –

AbdomenCT-K [] Abdomen organs CC BY .
AMOS [] Abdominal multi organs in CT and MRI CC BY .
ASOCA [, ] Normal and diseased coronary arteries –

autoPET [, –] Whole-body segmentations CC BY .
AVT [] Aortic vessel trees CC BY .
BraTS [–] Brain tumor segmentation –

Calgary-campinas [] Brain structure segmentations –

Crossmoda [, ] Brain tumor and cochlea segmentation CC BY .
CT-ORG [] Multiple organ segmentation CC .
Digital body preservation [] D scans of anatomical specimens –

EMIDEC [, ] Normal and pathological (infarction) myocardium CC BY NC SA .
Facial models [] Facial models for augmented reality CC BY .
FLARE [, –]  abdomen organs –

GLISRT [–] Brain structures TCIA restricted
HCP [] Paired brain-skull extracted from MRIs Data use terms
HECKTOR [, ] Head and neck tumor segmentation –

ISLES [] Ischemic stroke lesion segmentation CC-BY-.
KiTS [] Kidney and kidney tumor segmentation MIT
LiTS [] Liver tumor segmentation –

LNDb [, ] Lung nodules CC BY NC ND .
LUMIERE [] Longitudinal glioblastoma CC BY NC
MUG+ [] Healthy and craniotomy CT skulls CC BY .
MRI GBM [] Brain and GBM extracted from MRIs CC BY .
PROMISE [] Prostate MRI segmentation –

PulmonaryTree [] Pulmonary airways, arteries and veins CC BY .
SkullBreak [] Complete and artificially defected skulls CC BY .
SkullFix [] Complete and artificially defected skulls CC BY .
SUDMEX CONN [] Healthy and (cocaine use disorder) CUD brains CC
TCGA-GBM [] Glioblastoma –

D-COSI [] D medical instrument models CC BY .
DTeethSeg [, ] D teeth scan segmentation CC BY NC ND .
ToothFairy [, ] Inferior alveolar canal CC BY SA
TotalSegmentator [] Various anatomical structures CC BY .
VerSe [] Large scale vertebrae segmentation CC BY .

80 Li et al.: MedShapeNet

https://xrlab.ikim.nrw/


autoPET

Similar to TotalSegmentor, whole-body segmentations are
extracted from the PET-CT dataset provided by the autoPET
challenge [51], using an semi-supervised segmentation
network [43]. The dataset comes from cancer patients and
includes manual masks of tumor lesions.

Calgary-campinas (CC)

This dataset provides high-quality anatomical data with
1 mm3 voxels from T1-weighted MRIs of 359 healthy subjects
on scanners from three different vendors (GE, Philips,
Siemens) at field strengths of 1.5 and 3 T [58]. The subjects
vary in age and gender (176 M: 183 F, 53.5 ± 7.8 years, min: 18
years, max: 80 years). Probabilistic brain masks resulted
from eight automated brain segmentation algorithms by
simultaneous truth and performance level estimation
(STAPLE) [101]. The quality of the masks was validated
against 12 manual brain segmentations. Scientists investi-
gate brain extraction models [102], domain shift and adap-
tation in brain MRI [103], as well as MRI reconstruction [104]
using the CC dataset.

Abdominal multi-organ benchmark for
segmentation (AMOS)

The AMOS data includes 500 CTs and 100MRIs from a variety
of scanners and locations [48]. It provides expert segmen-
tations of 15 abdominal organs: spleen, right kidney, left
kidney, gallbladder, esophagus, liver, stomach, aorta, infe-
rior vena cava, pancreas, right adrenal gland, left adrenal
gland, duodenum, bladder, and prostate/uterus. Patients
with abdominal tumors or other abnormalities delivered the
images.

AbdomenCT-1K and fast and low-resource
abdominal organ segmentation (FLARE)

This dataset includes more than 1,000 CTs and manually
generated masks of the liver, kidney, spleen, and pancreas
[47]. A subset of the dataset was used in the [?] challenge,
which provides expert segmentations of 13 abdomen organs
the right and left kidney, stomach, gallbladder, esophagus,
aorta, inferior vena cava, right adrenal gland, left adrenal
gland, and duodenum [66] some of the CT scans are acquired
from cancer patients.

Ischemic stroke lesion segmentation (ISLES)

The ISLES challenge [75] provides 250 brain MRIs with bi-
nary masks depicting stroke infarctions. The dataset en-
compasses diverse brain lesions in terms of volume,
location, and stroke pattern. Masks are generated by
manually refining automatic segmentations from a 3D UNet
[105].

Synthetic anatomical shapes and shape
augmentation

In addition to real anatomical shapes, we also provide syn-
thetic shapes generated by generative adversarial net-works
(GANs) [106]. For instance, we generate synthetic tumors for
27,390 real brains (Figure 3). Besides GANs, synthetic shapes
can also be generated by registering two shapes andwarping
them to each other’s spaces [107]. This registration-based
shape augmentation methods were used in the winning
solutions of both the AutoImplant I and AutoImplant II
challenges [26, 28].

Medical instruments

In addition to anatomical shapes, MedShapeNet also pro-
vides 3D models of medical instruments [46], such as drill
bits, scalpels, and chisels (Figure 4). We process the
structured-light 3D scans using proprietary software
(Ultrascan 2.0.0.7, Artec Studio 17 Professional) to remove
noise. Thesemodels could help develop surgical tool tracking
methods in mixed reality for medical education and
research [32]. Realistic and accurate virtual surgical plan-
ning is performed in AR or VR [108], which improves the
surgical outcome [109].

Digital body preservation repository

These 3D models were captured from anatomical specimens
using the handheld, high-resolution (accuracy 0.05 mm)
structured-light surface scanner (Space Spider) and pro-
cessed by the Studio 15 software (Artec 3D LUX, Luxembourg,
Luxembourg) [62].

Pathological shapes

To increase the variability of the shape collections,
MedShapeNet contains not only normal/healthy anatomical
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shapes, such as the kidneys from TotalSegmentor and the
brains from HCP, but also pathological ones, which are
derived from patients diagnosed with a specific pathological
condition, such as tumor (liver, kidney, etc.) and CUD
(SUDMEX CONN, Table 2). Figure 3 shows the tumorous
kidneys, brains, livers and head & neck, as well as diseased
coronary arteries from different sources. We also use
generative adversarial networks (GANs) to generate
synthetic brain tumors, as shown in Figure 3.

Annotation and example use cases

In MedShapeNet, pairedness is defined as having two
composites i.e., the anatomical shapes and the metadata
originating from the same subject, with one serving as
input and the other as the ground truth. For instance, a 3D
shape in MedShapeNet is paired with its anatomical cate-
gory, such as ‘liver’, ‘heart’, ‘kidney’, and ‘lung’, which can be
used for anatomical shape classification and retrieval. The
metadata from DICOM or medical reports provides precise
information about the source images, the patients (including
attributes such as gender, age, body weight) as well as the
diagnosis, and can deliver a variety of annotations. Synthetic
shapes are distinguished from those obtained from real
imaging data by the ‘synthetic’ label.

Benchmarks derived from MedShapeNet

FromMedShapeNet and its paired data, we can derive three
types of benchmark datasets (Table 3):
– Discriminative benchmarks are comprised of 3D

shapes and the corresponding anatomical categories
and diagnosis. They can be used to train a classifier to
discriminate 3D shapes (e.g., healthy, cancerous) based
on shape-related features.

– Reconstructive benchmarks are composed of
anatomical shapes derived from whole-body segmen-
tations. They can be used in shape reconstruction tasks.
For example, by training on paired skull-face shapes

(Figure 6(A)), we can reconstruct human faces from the
skulls automatically. We can also estimate an in-
dividual’s body composition, such as fat percentage or
muscle distribution from the body surface [110, 111], by
regressing on paired skin-fat or skin-muscle data
(Figure 6(C)), or create a missing organ from its sur-
rounding anatomies [30].

– Variational benchmarks are usually used for condi-
tional reconstruction of 3D anatomical shapes. In addi-
tion to the geometric constraints imposed by the input
shape, new reconstructions are expected to satisfy an
additional attribute, such as age, gender or pathology.
For example, it is possible to reconstruct multiple faces
of different ages from the same skull, by introducing age
as a constraint during supervised training. Similarly, a
pathological condition, such as tumor, can be imposed
on healthy anatomies, or the morphological changes of
an anatomy during disease progression can be modeled
[112]. Variational auto-encoder (VAE) [113] and GANs are
commonly used for such conditional reconstruction
tasks.

Example use cases of MedShapeNet

To illustrate the unique value of MedShapeNet, we describe
five real-world use cases and showhowMedShapeNet is used
to solve vision/medical problems:
– Tumor classification of brain lesions is usually based

on gray-scale MRIs [114, 115]. In this use case, we train a
convolutional neural network (CNN)-based classifier to
discriminate between tumorous and healthy brain
shapes. The classifier has shown good convergence and
generalizability. Similar results are observed for the
classification of brain shapes frommales and females, in
line with existing studies [116].

– Facial reconstruction is a common practice in arche-
ology, anthropology and forensic science, where the
objective is to recreate the facial appearances of
historical figures, ancient humans or victims from

Table : Instances of MedShapeNet benchmarks.

Discriminative benchmarks Reconstructive benchmarks Variational benchmarks

Input (shape) Ground truth (metadata) Input (shape) Ground truth (shape) Input (shape + metadata) Ground Truth (Shape)

Liver/kidney/brain Tumor/healthy Skull Face Face + AUD/CUD/AD/age Face
Brain AUD/CUD/AD/age Ribs + spines Torso organs Brain + AUD/CUD/AD/age Brain
Face AUD/CUD/age/gender Skin Body fat/muscle/skeleton – –

D shapes Anatomical categories Full skeleton Skin – –

AD, Alzheimer’s disease; AUD, alcohol use disorder; CUD, cocaine use disorder.
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their skeletal remains [117]. Orthognathic surgery also
employs this technology to predict postoperative
outcomes [118]. Nevertheless, in addition to the skull,
the facial appearance is also significantly influenced by
factors such as the quantity and distribution of facial fat
and muscles [119], making facial reconstruction a highly
ill-posed problem in terms of the skull-face relationship
(Figure 7(A)).

– Skull reconstruction aims to rebuild missing parts of
the skull bones around the facial area or the cranium
(Figure 7(C)), where both voxel grids [26, 28, 120] and
point clouds [121, 122] have been used to represent the
skull data.

– Anatomy completion investigates the feasibility of
automatically generating whole-body segmentations
given only sparse manual annotations. The generated
segmentations can subsequently be used as pseudo
labels to train a whole-body segmentation network [30].
Figure 7(B) provides an example input and the corre-
sponding reconstruction results.

– Extended reality (XR) combines real and virtual
worlds. MedShapeNet can also benefit a variety of XR
(AR/MR/VR) applications that require 3D anatomical
models [123], such as virtual anatomy education [124].
Figure 8(A) shows a whole-body model using the
Microsoft HoloLens AR glasses. The user can dissemble
individual anatomies, move them, zoom in and out, and
rotate the structures (Figure 8(B) and (C)). Furthermore,
if necessary, we can 3D print themodels (Figure 8(D) and
(E)). Users can also wear VR gloves (Figure 8(F)) to
receive haptic feedback while interacting with the 3D
anatomies in VR [125].

MedShapeNet interface

Two interfaces are created for MedShapeNet, including a
web-based interface that provides access to the original
high-resolution shape data, and a Python API that enables
users to interact with the shape data via Python.

Figure 6: Examples of paired anatomical
shapes in MedShapeNet. (A) Paired skins,
muscles, fat, different tissues, organs and
bones. (B) Paired abdominal anatomies,
including liver, spleen, pancreas, right kidney,
left kidney, stomach, gallbladder, esophagus,
aorta, inferior vena cava, right adrenal gland,
left adrenal gland, and duodenum. (C) Paired
internal anatomies and body surfaces. For
anonymity, the faces are blurred.

Figure 7: Benchmarks for various vision applications can be derived fromMedShapeNet, such as (A) forensic facial reconstruction, (B) anatomical shape
reconstruction, and (C) skull reconstruction.
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Web-based interface

A user-centric, intuitive web-based interface3 has been
developed to provide convenient access to the shape data
withinMedShapeNet, which allows users to search, retrieve,
and view individual shapes. Shapes can be retrieved using
queries related to anatomical category such as heart’,
brain, hip, liver, or pathologies like tumor. A dedicated
GitHub page4 has also been established to manage shape
contribution and removal (in case of inaccurate shapes),
feature requests and the open-sourcing of applications based
on MedShapeNet.

MedShapeNetCore and python API

We have also developed a Python API that facilitates the
integration of the dataset into Python-centric workflows for
computer vision and machine learning. This API grants ac-
cess to a standardized subset of the original MedShapeNet
dataset, referred to as MedShapeNetCore, which has been
specifically curated for the efficient and reliable bench-
marking of various vision algorithms. MedShapeNetCore
differs from the original dataset in aspects:
– Resolution. The original 3D models are prohibitively

high resolution to be used directly by vision algorithms.5

In contrast, MedShapeNetCore contains considerably

more lightweight 3Dmodels and lower resolution images,
similar to those in ShapeNet [13] and MedMNIST [126].

– Quality. The 3D models inMedShapeNetCore are water-
tight and the quality of each individual model has been
meticulously verified through manual inspection.

– Annotation. MedShapeNetCore is more densely anno-
tated, expanding its applicability to tasks such as shape
part segmentation [127] and anatomical symmetry plane
estimation.

The 3D shapes are stored in the standard formats for
geometric data structures, i.e., NIfTI (.nii) for voxel grids,
stereolithography (.stl) for meshes and Polygon File Format
(.ply) for point clouds, facilitating fast shape preview via
existing softwares. The Python API facilitates the loading of
these shape data into standard Numpy arrays, ensuring a
seamless transformation into tensor representations
compatible with various deep learning frameworks,
including but not limited to PyTorch, MONAI, and Tensor-
Flow. The light-weight nature of these data expedites the
process of developing new medical vision algorithms or
evaluating existing ones, while maintaining a low compu-
tational overhead. The ongoing efforts in the development
of the Python API include integrating PyTorch3D [128] to
leverage its sophisticated 3D operators, establishing
predefined benchmarks tailored for various vision and
medical applications, and incorporating pre-trained
models and shape processing algorithms.

Discussion

High-quality, annotated datasets are valuable assets for
data-driven research. We created MedShapeNet as an open,

Figure 8: A use case of MedShapeNet in AR- and VR-based anatomy education. (A) A whole-body model from MedShapeNet dissembled into individual
anatomies. (B, C) anatomy manipulation in first- and third-person views. (D, E) A 3D-printed facial phantom and the corresponding skull and tumors.
(F) Using haptic VR gloves to interact with the 3D anatomical models in the virtual environment.

3 https://medshapenet.ikim.nrw/.
4 https://github.com/Jianningli/medshapenet-feedback.
5 The typical resolution for segmentation masks is 512 × 512 × Z, which
corresponds to hundreds of thousands points in point representations.
Dense anatomical structures such as the brain typically contain several
million points.
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ongoing effort and requires continuous contributions from
these communities. We believe that MedShapeNet holds
the potential to make significant contributions to research
in medical imaging and computer vision. It could impact
the practice of medical data curation and sharing, as well
as the development of data-driven methods for medical
applications.

Compared to vision datasets, large medical datasets are
more difficult to curate due to the sensitive, distributed, and
scarce nature of medical images. Therefore, the medical im-
aging community has recently started catching up with the
development of vision algorithms that can exploit large data-
sets, with more and more medical researchers becoming open
todata-sharing. Thus,MedShapeNetprovides aversatile dataset
that both vision and medical researchers are accustomed to.

To avoid potentially harmful societal impact, computer
vision research involving human-derived data should be
conducted with care. We designedMedShapeNet specifically
for research, and the researchers shall follow ethical
guidelines throughout methodology development and
experimental design. For example, publicly sharing neuro-
imaging data bears high privacy risks and needs regulation,
since they contain patients’ facial profiles [129]. For instance,
Schwarz et al. recently identified participants in a clinical
trial comparing their faces reconstructed from MRI with
photographs on social media [130]. Therefore, besides
removing patients’ meta informationfrom DICOM tags,
defacing is also commonly practiced [131]. However, we have
shown that machine learning can reconstruct skulls even
when they are damaged or parts of the bones are missing.
Another double-edged use case of MedShapeNet is training
machine learning to detect substance (drug or alcohol)
addiction or other diseases e.g., fetal alcohol syndrome (FAS),
based on facial characteristics [132]. Furthermore, since
MedShapeNet preserves the correspondence between the
shapes and patients’ meta information, such as age, race,
gender,medical history, etc., which facilitates the learning of
some controversial mapping relationships. Potentially, the
ethnic identity or medical history is predicted from a
person’s skull or facial profiles [133]. It is therefore the
responsibility of the researchers to weigh the social bene-
fits against the potential negative societal impacts while
developing models using MedShapeNet.

For future developments, we will primarily focus on the
following aspects:
– Incorporating a greater number of datasets and meta-

data as well as pathological shapes, particularly those
pertaining to rare diseases.

– Advocating for MedShapeNet through presentations at
conferences, symposia, and seminars, as well as orga-
nizing hackweeks, workshops, and challenges.

– Establishing additional benchmarks and use cases.
– Enhancing the web and Python interfaces.

Conclusions

In this white paper, we have introduced the initial efforts
for MedShapeNet. We (1) formed a community for data
contribution; (2) derived open-source benchmark datasets
for several use cases; (3) constructed interfaces to search to
download the shape data and its paired information; (4)
brought up several interesting shape-related research
topics; and (5) discussed the relevance of ethical guidelines
and precautions for privacy of medical data.
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